図9の磁場の向きに関係なく、銅の試料は図中の右側の低磁場領域に磁気的に引き寄せられます。 この挙動は反磁性と呼ばれる。 一方、アルミニウムは高磁場側に引き寄せられ、常磁性と呼ばれます。 物質が外界にさらされると、磁気双極子モーメントが発生する。 銅の場合は外場と逆向きに、アルミニウムの場合は外場と同じ向きに双極子モーメントが誘起される。 小さな体積の物質の磁化Mは、その小さな体積の磁気双極子モーメントの和(ベクトル和)をその体積で割ったものである。 Mは1メートルあたりのアンペアという単位で測定される。 誘導磁化の程度は物質の帯磁率χmによって与えられ、これは一般に
磁場Hは磁気強度と呼ばれ、Mと同様に1メートルあたりのアンペアという単位で測定される。 (磁場と呼ぶこともあるが、記号はHで統一されている)。 Hの定義は
物質における磁化効果については、以下に詳しく説明する。 鉄のように磁場や試料の以前の磁気状態に依存して帯磁率が大きくなる強磁性体では透磁率μがよく使われ、透磁率はB=μHの式で定義される。 (8)、(9)式より、μ=μ0 (1+χm)
電流ループの発生する磁界を大きくする強磁性体の効果はかなり大きい。 図10は、ギャップの小さい鉄の輪に導線をトロイダル状に巻いたものである。 図10と同様の鉄輪のないトロイダル巻線内部の磁界は、B = μ0Ni/2πr (rはトロイダル軸からの距離、Nは巻数、iはワイヤに流れる電流)で与えられる。 r=0.1m、N=100、i=10アンペアでのBの値は、わずか0.002テスラで、地表の磁場の約50倍である。 同じトロイドを鉄のリングに隙間なく巻き付けた場合、鉄の内部の磁場はμ/μ0(μは鉄の透磁率)だけ大きくなる。 この条件では、低炭素鉄の場合、μ=8,000μ0となる。 このとき、鉄の磁場は1.6テスラである。 一般的な電磁石では、図10の鉄輪の狭い隙間のような小さな領域の磁界を大きくするために鉄が使われる。 ギャップ幅が1cmの場合、そのギャップの磁場は約0.12テスラとなり、鉄を使わない場合のトロイドの磁場0.002テスラに対して60倍にもなります。 このファクターは、一般的にトロイダルの円周と強磁性体のギャップの比率で与えられます。 ギャップが非常に小さくなるとBの最大値はもちろんギャップがないときに上で得た1.6テスラになる。
磁場のエネルギー密度は物質がない場合、1/2B2/μ0で与えられ、単位はジュール/立方メートルで測定される。 このエネルギー密度を全空間にわたって積分すると全磁気エネルギーが求まる。 磁力線の分布を調べると、多くの場合、磁力の方向が推測できる。磁場の強い空間の体積が減少する方向に運動することが有利になる。 これは、Bの大きさがエネルギー密度の2乗であることから理解できる。 図11に電流が逆向きの2つの円形電流ループのB磁場の線をいくつか示す。
図11は3次元の磁場を2次元で表現しているので、線の間隔が磁場の強さを定性的にしか反映していない。 図の2つのループの間のBの値が高いのは、その領域に大きなエネルギー密度があり、ループを分離することでエネルギーが減少することを示している。 上述したように、これはこの2つのループ間の反発の原因を見る1つの方法である。 図12は、同じ方向の電流を持つ2つのループのBフィールドを示したものである。 ループ間の力は引力であり、ループを隔てる距離はループの半径に等しい。 その結果、2つのループの間の中心領域のB磁場は、驚くほど高い次元で均一化されていることがわかる。 このような構成は、ヘルムホルツ・コイルと呼ばれる。 大きなヘルムホルツコイルの電流の向きを注意深く調整することで、外部磁場を一切遮断しなければならない実験領域で、外部磁場(地球磁場など)を打ち消すことができる場合が多い。
Frank Neville H. RobinsonEustace E. SucklingEdwin Kashy